skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nair, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Network theory is used to formulate an atomistic material network. Spectral sparsification is applied to the network as a method for approximating the interatomic forces. Local molecu- lar forces and the total force balance is quantified when the inter- nal forces are approximated. In particular, we compare spectral sparsification to conventional thresholding (radial cut-off dis- tance) of molecular forces for a Lennard–Jones potential and a Coulomb potential. The spectral sparsification for the Lennard– Jones potential yields comparable results while spectral sparsi- fication of the Coulomb potential outperforms the thresholding approach. The results show promising opportunities which may accelerate molecular simulations containing long-range electri- cal interactions which are relevant to many multifunctional ma- terials. 
    more » « less